谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》

科技资讯 投稿 33900 0 评论

谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》

论文信息

论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks
论文作者:Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang,Sophia Ananiadou
论文来源:2021,EMNLP 
论文地址:download 
论文代码:download

Background

传播结构为谣言的真假提供了有用的线索,但是现有的谣言检测方法要么局限于用户相应关系,要么简化了对话结构。

本文说的 Claim 代表的是 Source post,即源帖。

1 Introduction

如下为一个简单的 conversation thread 例子:

本文提出的点:考虑兄弟之间的关系,如下图虚线部分。

2 Claim-guided Hierarchical Graph Attention Networks

总体框架如下:

本文的模型包括两个注意力模块:

    • A Graph Attention to capture the importance of different neighboring tweets

    • A claim-guided hierarchical attention to enhance post content understanding

2.1 Claim-guided Hierarchical Attention

对于每个 tweet $x_i$,首先使用 Bi-LSTM 获得 Post 的特征矩阵 $X=\left[c, x_{1}, x_{2}, \cdots, x_{|\mathcal{V}|-1}\right]^{\top}$,其中 $c, x_{i} \in \mathbb{R}^{d}$。

为加强模型的主题一致性和语义推理:

Post-level Attention

为了防止主题偏离和丢失 claim 的信息,本文采用 gate module 决定它应该接受 claim 多少信息,以更好地指导相关职位的重要性分配。claim-aware representation 具体如下:

$\begin{array}{l}g_{c \rightarrow x_{i}}^{(l} &=&\operatorname{sigmoid}\left(W_{g}^{(l} h_{x_{i}}^{(l}+U_{g}^{(l} h_{c}^{(l}\right \\\tilde{h}_{x_{i}}^{(l} &=&g_{c \rightarrow x_{i}}^{(l} \odot h_{x_{i}}^{(l}+\left(1-g_{c \rightarrow x_{i}}^{(l}\right \odot h_{c}^{(l}\end{array}$

其中,$g_{c \rightarrow x_{i}}^{(l}$ 是一个 gate vector,$W_{g}^{(l}$ 和 $U_{g}^{(l}$ 是可学习参数。

然后,将 claim-aware representation 与 original representation 拼接起来,作为 $\text{Eq.1}$ 的输入去计算注意力权重:
       $\begin{array}{l}\hat{h}_{x_{i}}^{(l}=\left[\tilde{h}_{x_{i}}^{(l} \| h_{x_{i}}^{(l}\right] \\\hat{\alpha}_{i, j}^{(l}=\operatorname{Atten}\left(\hat{h}_{x_{i}}^{(l}, \hat{h}_{x_{j}}^{(l}\right\end{array}$

2.2 Graph Attention Networks

为了编码结构信息,本文使用 GAT encoder:
   输入:$H^{(l}=\left[h_{c}^{(l}, h_{x_{1}}^{(l}, h_{x_{2}}^{(l}, \ldots, h_{x_{|\mathcal{V}|-1}}^{(l}\right]^{\top}$
   过程
       ${\large  \begin{aligned}\alpha_{i, j}^{(l} &=\operatorname{Atten}\left(h_{x_{i}}^{(l}, h_{x_{j}}^{(l}\right \\&=\frac{\exp \left(\phi\left(a^{\top}\left[W^{(l} h_{x_{i}}^{(l} \| W^{(l} h_{x_{j}}^{(l}\right]\right\right}{\sum_{j \in \mathcal{N}_{i}} \exp \left(\phi\left(a^{\top}\left[W^{(l} h_{x_{i}}^{(l} \| W^{(l} h_{x_{j}}^{(l}\right]\right\right}\end{aligned}} $

$h_{x_{i}}^{(l+1}=\operatorname{Re} L U\left(\sum\limits_{j \in \mathcal{N}_{i}} \alpha_{i, j}^{(l} W^{(l} h_{x_{j}}^{(l}\right$

考虑多头注意力:

$h_{x_{i}}^{(l+1}=\|_{k=1}^{K} \operatorname{ReLU}\left(\sum\limits _{j \in \mathcal{N}_{i}} \alpha_{i, j}^{(l, k} W_{k}^{(l} h_{x_{j}}^{(l}\right$

替换输出层的表示向量:

${\large h_{x_{i}}^{(L}=\operatorname{Re} L U\left(\frac{1}{K} \sum\limits _{k=1}^{K} \sum\limits_{j \in \mathcal{N}_{i}} \alpha_{i, j}^{\left(l^{\prime}, k\right} W_{k}^{\left(l^{\prime}\right} h_{x_{j}}^{\left(l^{\prime}\right}\right} $

输出:图表示

$\bar{s}=\text { mean-pooling }\left(H^{(L}\right$

Event-level Attention

出发点:获得图表示的时候采用的 平均池化并不是一定有意义的,可能存在某些节点对于图分类来说更准确。

受到 Natural Language Inference (NLI 的影响,本文考虑对 GAT 最后一层的 $h_{c}^{(L}$ 和  $\left.h_{x_{i}}^{(L}: 1\right$  做如下处理 :

1)concatenation $\left[h_{c}^{(L} \| h_{x_{i}}^{(L}\right]$

2)element-wise product $h_{\text {prod }}^{(L}=h_{c}^{(L} \odot h_{x_{i}}^{(L}$

3)absolute element-wise difference $h_{\text {diff }}^{(L}=\left|h_{c}^{(L}-h_{x_{i}}^{(L}\right|$

接着获得一个联合表示:

$h_{x_{i}}^{c}=\tanh \left(F C\left(\left[h_{c}^{(L}\left\|h_{x_{i}}^{(L}\right\| h_{\text {prod }}^{(L} \| h_{\text {diff }}^{(L}\right]\right\right$

通过使用该联合表示计算 Event-level Attention :

${\large \begin{array}{l}b_{i} &=&\tanh \left(F C\left(h_{x_{i}}^{c}\right\right \\\beta_{i} &=&\frac{\exp \left(b_{i}\right}{\sum_{i} \exp \left(b_{i}\right} \\\hat{s} &&=\sum_{i} \beta_{i} h_{x_{i}}^{(L}\end{array}} $

最后将其 $\hat{S}$ 与 GAT 最后一层的平均池化图表示 $\bar{s}$ 拼接作为最终图表示,并进行分类:

$\hat{y}=\operatorname{softmax}(F C([\hat{s} \| \bar{s}]$

3 Experiments

3.1 Datasets

3.2 Rumor Classifification Performance 

TWITTER15 分类结果: 

PHEME 分类结果:

3.3 Ablation Study

1 ClaHi-GAT/DT: Instead of the undirected interaction graph, we use the directed trees as the model input。

2 GAT+EA+SC: We simply concatenate the features of the claim with the node features at each GAT layer, to replace the claim-aware representation。

3 w/o EA: We discard the event-level (inference-based attention as presented。

4 w/o PA: We neglect the post-level (claim-aware attention by leaving out the gating module introduced。

5 GAT: The backbone model。

6 GCN: The vanilla graph convolutional networks with no attention。

3.4 Evaluation of Undirected Interaction Graphs 

    ClaHi-GAT/DT Utilize the directional tree applied in past influential works as the modeling way instead of our proposed undirected interaction graph.
  1. ClaHi-GAT/DTS Based on the directional tree structure similar to ClaHi-GAT/DT but the explicit interactions between sibling nodes are taken into account.

  2. ClaHi-GAT/UD The modeling way is our undirected interaction topology but without considering the explicit correlations between sibling nodes that reply to the same target.

  3. ClaHi-GAT In this paper, we propose to model the conversation thread as an undirected interaction graph for our claim-guided hierarchical graph attention networks.

3.5 Early Rumor Detection

举例说明:false claim 的注意力分数得分图如下:

言下之意:错误的 post $x_2$ 会被赋予较小的权重,这就是为什么该模型早期谣言检测比较稳定的原因。

编程笔记 » 谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》

赞同 (39) or 分享 (0)
游客 发表我的评论   换个身份
取消评论

表情
(0)个小伙伴在吐槽