
原数据库的同步问题
由于传统的 mysql 数据库并不擅长海量数据的检索,当数据量到达一定规模时(估算单表两千万左右),查询和插入的耗时会明显增加。同样,当需要对这些数据进行模糊查询或是数据分析时,MySQL作为事务型关系数据库很难提供良好的性能支持。使用适合的数据库来实现模糊查询是解决这个问题的关键。
那具体该如何实现呢?在又拍云以往的项目中,也有遇到相似的问题。之前采用的方法是在业务中编写代码,然后同步到 elasticsearch 中。具体是这样实施的:每个系统编写特定的代码,修改 MySQL 数据库后,再将更新的数据直接推送到需要同步的数据库中,或推送到队列由消费程序来写入到数据库中。
-
工作量和复杂度增加
系统高耦合,侵入式代码,使得业务逻辑复杂度增加
解决思路及方案
调整架构
既然以往的方案有明显的缺点,那我们如何来解决它呢?优秀的解决方案往往是 “通过架构来解决问题“,那么能不能通过架构的思想来解决问题呢?
这个架构的核心是通过监听 MySQL 的 binlog 来同步增量数据,通过基于 query 的查询旧表来同步旧数据,这就是本文要讲的一种异构数据库同步的实践。
改进数据库
首先对 MySQL 开启 binlog,但是由于 maxwell 需要的 binlog_format=row 原本的生产环境的数据库不宜修改。这里请教了海杨前辈,他提供了”从库联级“的思路,在从库中监听 binlog 绕过了操作生产环境重启主库的操作,大大降低了系统风险。
这套方案使用到了kafka、maxwell、logstash、elasticsearch。其中 elasticsearch 与 kafka已经在生产环境中有部署,所以无需单独部署维护。而 logstash 与 maxwell 只需要修改配置文件和启动命令即可快速上线。整套方案的意义不仅在于成本低,而且可以大规模使用,公司内有 MySQL 同步到其它数据库的需求时,都可以上任。
成果展示前后对比
方案实施细节
接下来,我们来看看具体是如何实现的。
-
Maxwell(监听 binlog)
-
Elasticsearch
MySQL
1. MySQL配置
本次使用 MySQL 5.5 作示范,其他版本的配置可能稍许不同需要
-- 创建一个 用户名为 maxwell 密码为 xxxxxx 的用户
CREATE USER 'maxwell'@'%' IDENTIFIED BY 'XXXXXX';
GRANT ALL ON maxwell.* TO 'maxwell'@'localhost';
GRANT SELECT, REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'maxwell'@'%';
开启数据库的 binlog,修改 mysql 配置文件,注意 maxwell 需要的 binlog 格式必须是row。
# /etc/mysql/my.cnf
[mysqld]
# maxwell 需要的 binlog 格式必须是 row
binlog_format=row
# 指定 server_id 此配置关系到主从同步需要按情况设置,
# 由于此mysql没有开启主从同步,这边默认设置为 1
server_id=1
# logbin 输出的文件名,按需配置
log-bin=master
重启 MySQL 并查看配置是否生效:
sudo systemctl restart mysqld
select @@log_bin;
-- 正确结果是 1
select @@binlog_format;
-- 正确结果是 ROW
如果要监听的数据库开启了主从同步,并且不是主数据库,需要再从数据库开启 binlog 联级同步。
# /etc/my.cnf
log_slave_updates = 1
需要被同步到 elasticsearch 的表结构。
-- robin.logs
show create table robin.logs;
-- 表结构
CREATE TABLE `logs` (
`id` int(11 unsigned NOT NULL AUTO_INCREMENT,
`content` text NOT NULL,
`user_id` int(11 NOT NULL,
`status` enum('SUCCESS','FAILED','PROCESSING' NOT NULL,
`type` varchar(20 DEFAULT '',
`meta` text,
`created_at` bigint(15 NOT NULL,
`idx_host` varchar(255 DEFAULT '',
`idx_domain_id` int(11 unsigned DEFAULT NULL,
`idx_record_value` varchar(255 DEFAULT '',
`idx_record_opt` enum('DELETE','ENABLED','DISABLED' DEFAULT NULL,
`idx_orig_record_value` varchar(255 DEFAULT '',
PRIMARY KEY (`id`,
KEY `created_at` (`created_at`
ENGINE=InnoDB AUTO_INCREMENT=8170697 DEFAULT CHARSET=utf8
2. Maxwell 配置
本次使用 maxwell-1.39.2 作示范, 确保机器中包含 java 环境,推荐 openjdk11
下载 maxwell 程序
wget https://github.com/zendesk/maxwell/releases/download/v1.39.2/maxwell-1.39.2.tar.gz
tar zxvf maxwell-1.39.2.tar.gz **&&** cd maxwell-1.39.2
maxwell 使用了两个数据库:
-
另一个是记录maxwell服务状态的数据库,当前这两个数据库可以是同一个
-
user 需要监听binlog的数据库用户名
-
replication_host 记录maxwell服务的数据库地址
-
replication_user 记录maxwell服务的数据库用户名
-
producer 将监听到的增量变化数据提交给的消费者 (如 stdout、kafka
-
kafka_version kafka 版本
host 需要监听binlog的数据库地址
启动 maxwell
./bin/maxwell
--host=mysql-maxwell.mysql.svc.cluster.fud3
--port=3306
--user=root
--password=password
--replication_host=192.168.5.38
--replication_port=3306
--replication_user=cloner
--replication_password=password
--filter='exclude: *.*, include: robin.logs'
--producer=kafka
--kafka.bootstrap.servers=192.168.30.10:9092
--kafka_topic=maxwell-robinlogs --kafka_version=0.9.0.1
3. 安装 Logstash
Logstash 包中已经包含了 openjdk,无需额外安装。
wget https://artifacts.elastic.co/downloads/logstash/logstash-8.5.0-linux-x86_64.tar.gz
tar zxvf logstash-8.5.0-linux-x86_64.tar.gz
删除不需要的配置文件。
rm config/logstash.yml
修改 logstash 配置文件,此处语法参考官方文档(https://www.elastic.co/guide/en/logstash/current/input-plugins.html) 。
# config/logstash-sample.conf
input {
kafka {
bootstrap_servers => "192.168.30.10:9092"
group_id => "main"
topics => ["maxwell-robinlogs"]
}
}
filter {
json {
source => "message"
}
# 将maxwell的事件类型转化为es的事件类型
# 如增加 -> index 修改-> update
translate {
source => "[type]"
target => "[action]"
dictionary => {
"insert" => "index"
"bootstrap-insert" => "index"
"update" => "update"
"delete" => "delete"
}
fallback => "unknown"
}
# 过滤无效的数据
if ([action] == "unknown" {
drop {}
}
# 处理数据格式
if [data][idx_host] {
mutate {
add_field => { "idx_host" => "%{[data][idx_host]}" }
}
} else {
mutate {
add_field => { "idx_host" => "" }
}
}
if [data][idx_domain_id] {
mutate {
add_field => { "idx_domain_id" => "%{[data][idx_domain_id]}" }
}
} else {
mutate {
add_field => { "idx_domain_id" => "" }
}
}
if [data][idx_record_value] {
mutate {
add_field => { "idx_record_value" => "%{[data][idx_record_value]}" }
}
} else {
mutate {
add_field => { "idx_record_value" => "" }
}
}
if [data][idx_record_opt] {
mutate {
add_field => { "idx_record_opt" => "%{[data][idx_record_opt]}" }
}
} else {
mutate {
add_field => { "idx_record_opt" => "" }
}
}
if [data][idx_orig_record_value] {
mutate {
add_field => { "idx_orig_record_value" => "%{[data][idx_orig_record_value]}" }
}
} else {
mutate {
add_field => { "idx_orig_record_value" => "" }
}
}
if [data][type] {
mutate {
replace => { "type" => "%{[data][type]}" }
}
} else {
mutate {
replace => { "type" => "" }
}
}
mutate {
add_field => {
"id" => "%{[data][id]}"
"content" => "%{[data][content]}"
"user_id" => "%{[data][user_id]}"
"status" => "%{[data][status]}"
"meta" => "%{[data][meta]}"
"created_at" => "%{[data][created_at]}"
}
remove_field => ["data"]
}
mutate {
convert => {
"id" => "integer"
"user_id" => "integer"
"idx_domain_id" => "integer"
"created_at" => "integer"
}
}
# 只提炼需要的字段
mutate {
remove_field => [
"message",
"original",
"@version",
"@timestamp",
"event",
"database",
"table",
"ts",
"xid",
"commit",
"tags"
]
}
}
output {
# 结果写到es
elasticsearch {
hosts => ["http://es-zico2.service.upyun:9500"]
index => "robin_logs"
action => "%{action}"
document_id => "%{id}"
document_type => "robin_logs"
}
# 结果打印到标准输出
stdout {
codec => rubydebug
}
}
执行程序:
# 测试配置文件*
bin/logstash -f config/logstash-sample.conf --config.test_and_exit
# 启动*
bin/logstash -f config/logstash-sample.conf --config.reload.automatic
4. 全量同步
完成启动后,后续的增量数据 maxwell 会自动推送给 logstash 最终推送到 elasticsearch,而之前的旧数据可以通过 maxwell 的 bootstrap 来同步,往下面表中插入一条任务,那么 maxwell 会自动将所有符合条件的 where_clause 的数据推送更新。
INSERT INTO maxwell.bootstrap
( database_name, table_name, where_clause, client_id
values
( 'robin', 'logs', 'id > 1', 'maxwell' ;
后续可以在 elasticsearch 检测数据是否同步完成,可以先查看数量是否一致,然后抽样对比详细数据。
# 检测 elasticsearch 中的数据量
GET robin_logs/robin_logs/_count