前言
- 锁和CAS
- 伪共享和缓存行
- volatile和内存屏障
原理
此节结合demo来看更容易理解:传送门
-
环形数据缓冲区:这是一个首尾相接的环,用于存放 Event,用于生产者往其存入数据和消费者从其拉取数据
-
序列:用于跟踪进度(生产进度、消费进度)
-
Disruptor的核心,用于在生产者和消费者之间传递数据,有单生产者和多生产者两种实现。
-
序列屏障,消费者之间的依赖关系就靠序列屏障实现
-
等待策略,消费者等待生产者将发布的策略
-
事件处理器,循环从 RingBuffer 获取 Event 并执行 EventHandler。
-
事件处理程序,也就是消费者
-
生产者
Event
LongEvent
Ring Buffer
Object[]。Disruptor生产者发布分两步
- 步骤一:申请写入 n 个元素,如果可以写入,这返回最大序列号
- 步骤二:根据序列号去 RingBuffer 中获取 Event,修改并发布
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(;
// 获取下一个可用位置的下标(步骤1
long sequence = ringBuffer.next(;
try {
// 返回可用位置的元素
LongEvent event = ringBuffer.get(sequence;
// 设置该位置元素的值
event.set(l;
} finally {
// 发布
ringBuffer.publish(sequence;
}
这两个步骤由 Sequencer 完成,分为单生产者和多生产者实现
Sequencer
单生产者
// 一般不会有以下写法,这里为了讲解源码才使用next(2
// 向RingBuffer申请两个元素
long sequence = ringBuffer.next(2;
for (long i = sequence-1; i <= sequence; i++ {
try {
// 返回可用位置的元素
LongEvent event = ringBuffer.get(i;
// 设置该位置元素的值
event.set(1;
} finally {
ringBuffer.publish(i;
}
}
申请相当于占位置,发布需要一个一个按顺序发布
接下来结合代码看,单生产者的 Sequencer 实现为 SingleProducerSequencer,先看看构造方法
abstract class SingleProducerSequencerPad extends AbstractSequencer
{
protected long p1, p2, p3, p4, p5, p6, p7;
SingleProducerSequencerPad(int bufferSize, WaitStrategy waitStrategy
{
super(bufferSize, waitStrategy;
}
}
abstract class SingleProducerSequencerFields extends SingleProducerSequencerPad
{
SingleProducerSequencerFields(int bufferSize, WaitStrategy waitStrategy
{
super(bufferSize, waitStrategy;
}
long nextValue = Sequence.INITIAL_VALUE;
long cachedValue = Sequence.INITIAL_VALUE;
}
public final class SingleProducerSequencer extends SingleProducerSequencerFields
{
protected long p1, p2, p3, p4, p5, p6, p7;
public SingleProducerSequencer(int bufferSize, WaitStrategy waitStrategy
{
super(bufferSize, waitStrategy;
}
}
这是 Disruptor 高性能的技巧之一,SingleProducerSequencer 需要的类变量只有 nextValue 和cachedValue,p1 ~ p7 的作用是填充缓存行,这能保证 nextValue 和cachedValue 必定在独立的缓存行,我们可以用ClassLayout
打印内存布局看看
// 调用路径
// RingBuffer#next(
// SingleProducerSequencer#next(
public long next(int n
{
if (n < 1
{
throw new IllegalArgumentException("n must be > 0";
}
long nextValue = this.nextValue;
//生产者当前序号值+期望获取的序号数量后达到的序号值
long nextSequence = nextValue + n;
//减掉RingBuffer的总的buffer值,用于判断是否出现‘覆盖’
long wrapPoint = nextSequence - bufferSize;
//从后面代码分析可得:cachedValue就是缓存的消费者中最小序号值,他不是当前最新的‘消费者中最小序号值’,而是上次程序进入到下面的if判定代码段时,被赋值的当时的‘消费者中最小序号值’
//这样做的好处在于:在判定是否出现覆盖的时候,不用每次都调用getMininumSequence计算‘消费者中的最小序号值’,从而节约开销。只要确保当生产者的节奏大于了缓存的cachedGateingSequence一个bufferSize时,从新获取一下 getMinimumSequence(即可。
long cachedGatingSequence = this.cachedValue;
//(wrapPoint > cachedGatingSequence : 当生产者已经超过上一次缓存的‘消费者中最小序号值’(cachedGatingSequence)一个‘Ring’大小(bufferSize),需要重新获取cachedGatingSequence,避免当生产者一直在生产,但是消费者不再消费的情况下,出现‘覆盖’
//(cachedGatingSequence > nextValue : https://github.com/LMAX-Exchange/disruptor/issues/76
// 这里判断就是生产者生产的填满BingBUffer,需要等待消费者消费
if (wrapPoint > cachedGatingSequence || cachedGatingSequence > nextValue
{
cursor.setVolatile(nextValue; // StoreLoad fence
//gatingSequences就是消费者队列末尾的序列,也就是消费者消费到哪里了
//实际上就是获得处理的队尾,如果队尾是current的话,说明所有的消费者都执行完成任务在等待新的事件了
long minSequence;
while (wrapPoint > (minSequence = Util.getMinimumSequence(gatingSequences, nextValue
{
// 等待1纳秒
LockSupport.parkNanos(1L; // TODO: Use waitStrategy to spin?
}
this.cachedValue = minSequence;
}
this.nextValue = nextSequence;
return nextSequence;
}
public void publish(long sequence
{
// 更新序列号
cursor.set(sequence;
// 等待策略的唤醒
waitStrategy.signalAllWhenBlocking(;
}
要解释的都在注释里了,gatingSequences 是消费者队列末尾的序列,对应着就是下图中的 ApplicationConsumer 的 Sequence
多生产者
如果有A、B两个消费者都来申请 2 个元素
getHighestPublishedSequence 方法的返回值
MultiProducerSequencer的availableBuffer
来维护。
public final class MultiProducerSequencer extends AbstractSequencer
{
// 缓存的消费者中最小序号值,相当于SingleProducerSequencerFields的cachedValue
private final Sequence gatingSequenceCache = new Sequence(Sequencer.INITIAL_CURSOR_VALUE;
// 标记元素是否可用
private final int[] availableBuffer;
public long next(int n
{
if (n < 1
{
throw new IllegalArgumentException("n must be > 0";
}
long current;
long next;
do
{
current = cursor.get(;
next = current + n;
//减掉RingBuffer的总的buffer值,用于判断是否出现‘覆盖’
long wrapPoint = next - bufferSize;
//从后面代码分析可得:cachedValue就是缓存的消费者中最小序号值,他不是当前最新的‘消费者中最小序号值’,而是上次程序进入到下面的if判定代码段时,被赋值的当时的‘消费者中最小序号值’
//这样做的好处在于:在判定是否出现覆盖的时候,不用每次都调用getMininumSequence计算‘消费者中的最小序号值’,从而节约开销。只要确保当生产者的节奏大于了缓存的cachedGateingSequence一个bufferSize时,从新获取一下 getMinimumSequence(即可。
long cachedGatingSequence = gatingSequenceCache.get(;
//(wrapPoint > cachedGatingSequence : 当生产者已经超过上一次缓存的‘消费者中最小序号值’(cachedGatingSequence)一个‘Ring’大小(bufferSize),需要重新获取cachedGatingSequence,避免当生产者一直在生产,但是消费者不再消费的情况下,出现‘覆盖’
//(cachedGatingSequence > nextValue : https://github.com/LMAX-Exchange/disruptor/issues/76
// 这里判断就是生产者生产的填满BingBUffer,需要等待消费者消费
if (wrapPoint > cachedGatingSequence || cachedGatingSequence > current
{
long gatingSequence = Util.getMinimumSequence(gatingSequences, current;
if (wrapPoint > gatingSequence
{
LockSupport.parkNanos(1; // TODO, should we spin based on the wait strategy?
continue;
}
gatingSequenceCache.set(gatingSequence;
}
// 使用cas保证只有一个生产者能拿到next
else if (cursor.compareAndSet(current, next
{
break;
}
}
while (true;
return next;
}
......
}
MultiProducerSequencer
和SingleProducerSequencer
的 next(方法逻辑大致一样,只是多了CAS的步骤来保证并发的正确性。接着看发布方法public void publish(final long sequence { // 记录发布情况 setAvailable(sequence; // 等待策略的唤醒 waitStrategy.signalAllWhenBlocking(; } private void setAvailable(final long sequence { // calculateIndex(sequence:获取序号 // calculateAvailabilityFlag(sequence:RingBuffer的圈数 setAvailableBufferValue(calculateIndex(sequence, calculateAvailabilityFlag(sequence; } private void setAvailableBufferValue(int index, int flag { long bufferAddress = (index * SCALE + BASE; UNSAFE.putOrderedInt(availableBuffer, bufferAddress, flag; // 上面相当于 availableBuffer[index] = flag 的高性能版 }
记录发布情况,其实相当于
availableBuffer[sequence] = 圈数
,前面说了,availableBuffer
是用来标记元素是否可用的,如果消费者的圈数 ≠ availableBuffer中的圈数,则表示元素不可用public boolean isAvailable(long sequence { int index = calculateIndex(sequence; // 计算圈数 int flag = calculateAvailabilityFlag(sequence; long bufferAddress = (index * SCALE + BASE; // UNSAFE.getIntVolatile(availableBuffer, bufferAddress:相当于availableBuffer[sequence] 的高性能版 return UNSAFE.getIntVolatile(availableBuffer, bufferAddress == flag; } private int calculateAvailabilityFlag(final long sequence { // 相当于 sequence % bufferSize,但是位操作更快 return (int (sequence >>> indexShift; }
isAvailable( 方法判断元素是否可用,此方法的调用堆栈看完消费者就清楚了。
消费者
消费者的依赖关系实现
下面看源码,这是 disruptor 配置消费者的代码。
EventHandler journalConsumer = xxx; EventHandler replicaionConsumer = xxx; EventHandler applicationConsumer = xxx; disruptor.handleEventsWith(journalConsumer, replicaionConsumer .then(applicationConsumer; // 下面两行等同于上面这行 // disruptor.handleEventsWith(journalConsumer, replicaionConsumer; // disruptor.after(journalConsumer, replicaionConsumer.then(applicationConsumer;
先看ReplicaionConsumer 和 JournalConsumer 的配置 disruptor.handleEventsWith(journalConsumer, replicaionConsumer
/** 代码都在Disruptor类 **/ public final EventHandlerGroup<T> handleEventsWith(final EventHandler<? super T>... handlers { // 没有依赖的消费者就创建新的Sequence return createEventProcessors(new Sequence[0], handlers; } /** * 创建消费者 * @param barrierSequences 当前消费者组的屏障序列数组,如果当前消费者组是第一组,则取一个空的序列数组;否则,barrierSequences就是上一组消费者组的序列数组 * @param eventHandlers 事件消费逻辑的EventHandler数组 */ EventHandlerGroup<T> createEventProcessors( final Sequence[] barrierSequences, final EventHandler<? super T>[] eventHandlers { checkNotStarted(; // 对应此事件处理器组的序列组 final Sequence[] processorSequences = new Sequence[eventHandlers.length]; final SequenceBarrier barrier = ringBuffer.newBarrier(barrierSequences; for (int i = 0, eventHandlersLength = eventHandlers.length; i < eventHandlersLength; i++ { final EventHandler<? super T> eventHandler = eventHandlers[i]; // 创建消费者,注意这里传入了SequenceBarrier final BatchEventProcessor<T> batchEventProcessor = new BatchEventProcessor<>(ringBuffer, barrier, eventHandler; if (exceptionHandler != null { batchEventProcessor.setExceptionHandler(exceptionHandler; } consumerRepository.add(batchEventProcessor, eventHandler, barrier; processorSequences[i] = batchEventProcessor.getSequence(; } // 每次添加完事件处理器后,更新门控序列,以便后续调用链的添加 // 所谓门控,就是RingBuffer要知道在消费链末尾的那组消费者(也是最慢的)的进度,避免消息未消费就被写入覆盖 updateGatingSequencesForNextInChain(barrierSequences, processorSequences; return new EventHandlerGroup<>(this, consumerRepository, processorSequences; }
createEventProcessors( 方法主要做了3件事,创建消费者、保存eventHandler和消费者的映射关系、更新 gatingSequences
- EventProcessor 是消费者
- SequenceBarrier 是消费者屏障,保证了消费者的依赖关系
- consumerRepository 保存了eventHandler和消费者的映射关系
// 为消费链下一组消费者,更新门控序列
// barrierSequences是上一组事件处理器组的序列(如果本次是第一次,则为空数组),本组不能超过上组序列值
// processorSequences是本次要设置的事件处理器组的序列
private void updateGatingSequencesForNextInChain(final Sequence[] barrierSequences, final Sequence[] processorSequences
{
if (processorSequences.length > 0
{
// 将本组序列添加到Sequencer中的gatingSequences中
ringBuffer.addGatingSequences(processorSequences;
// 将上组消费者的序列从gatingSequences中移除
for (final Sequence barrierSequence : barrierSequences
{
ringBuffer.removeGatingSequence(barrierSequence;
}
// 取消标记上一组消费者为消费链末端
consumerRepository.unMarkEventProcessorsAsEndOfChain(barrierSequences;
}
}
让我们把视线再回到消费者的设置方法
disruptor.handleEventsWith(journalConsumer, replicaionConsumer
.then(applicationConsumer;
journalConsumer 和 replicaionConsumer 已经设置了,接下来是 applicationConsumer
/** 代码在EventHandlerGroup类 **/
public final EventHandlerGroup<T> then(final EventHandler<? super T>... handlers
{
return handleEventsWith(handlers;
}
public final EventHandlerGroup<T> handleEventsWith(final EventHandler<? super T>... handlers
{
return disruptor.createEventProcessors(sequences, handlers;
}
可以看到,设置 applicationConsumer 最终调用的也是 createEventProcessors( 方法,区别就在于 createEventProcessors( 方法的第一个参数,这里的 sequences 就是 journalConsumer 和 replicaionConsumer 这两个消费者的 Sequence
消费者的消费逻辑
EventProcessor#run(方法中,下面以BatchEventProcessor
举例
// BatchEventProcessor#run(
// BatchEventProcessor#processEvents(
private void processEvents(
{
T event = null;
long nextSequence = sequence.get( + 1L;
while (true
{
try
{
// 获取最大可用序列
final long availableSequence = sequenceBarrier.waitFor(nextSequence;
...
// 执行消费逻辑
while (nextSequence <= availableSequence
{
// dataProvider就是RingBuffer
event = dataProvider.get(nextSequence;
eventHandler.onEvent(event, nextSequence, nextSequence == availableSequence;
nextSequence++;
}
sequence.set(availableSequence;
}
catch (
{
// 异常处理
}
}
}
方法简洁明了,在死循环中通过 sequenceBarrier 获取最大可用序列,然后从 RingBuffer 中获取 Event 并调用 EventHandler 进行消费。重点在 sequenceBarrier.waitFor(nextSequence; 中
public long waitFor(final long sequence
throws AlertException, InterruptedException, TimeoutException
{
checkAlert(;
// 获取可用的序列,这里返回的是Sequencer#next方法设置成功的可用下标,不是Sequencer#publish
// cursorSequence:生产者的最大可用序列
// dependentSequence:依赖的消费者的最大可用序列
long availableSequence = waitStrategy.waitFor(sequence, cursorSequence, dependentSequence, this;
if (availableSequence < sequence
{
return availableSequence;
}
// 获取最大的已发布成功的序号(对于发布是否成功的校验在此方法中)
return sequencer.getHighestPublishedSequence(sequence, availableSequence;
}
熟悉的 getHighestPublishedSequence( 方法,忘了就回去看看生产者小节。waitStrategy.waitFor( 对应着图片中的 waitFor( 。
消费者的启动
disruptor.start(;
// Disruptor#start(
public RingBuffer<T> start(
{
checkOnlyStartedOnce(;
for (final ConsumerInfo consumerInfo : consumerRepository
{
consumerInfo.start(executor;
}
return ringBuffer;
}
class EventProcessorInfo<T> implements ConsumerInfo
{
public void start(final Executor executor
{
// eventprocessor就是消费者
executor.execute(eventprocessor;
}
}
还记得 consumerRepository
吗,没有就往上翻翻设置消费者那里的 disruptor.handleEventsWith( 方法。
disruptor#start( → ConsumerInfo#start( → Executor#execute( → EventProcessor#run(
总结
本文讲了 Disruptor 大体逻辑和源码,当然其高性能的秘诀不止文中描述的那些。还有不同的等待策略,Sequence 中使用Unsafe
而不是JDK中的 Atomic 原子类等等。