Softmax分类器
Softmax分类是一种常用的多类别分类算法,它可以将输入数据映射到一个概率分布上。Softmax分类首先将输入数据通过线性变换得到一个向量,然后将向量中的每个元素进行指数函数运算,最后将指数运算结果归一化得到一个概率分布。这个概率分布可以被解释为每个类别的概率估计。
定义
class SoftmaxClassifier(nn.Module:
def __init__(self,input_size,output_size:
# 调用父类的__init__(方法进行初始化
super(SoftmaxClassifier,self.__init__(
# 定义一个nn.Linear对象,用于将输入特征映射到输出类别
self.linear = nn.Linear(input_size,output_size
def forward(self,x:
x = self.linear(x # 传递给线性层
return nn.functional.softmax(x,dim=1 # 得到概率分布
def compute_accuracy(self,output,labels:
preds = torch.argmax(output,dim=1 # 获取每个样本的预测标签
correct = torch.sum(preds == labels.item( # 计算正确预测的数量
accuracy = correct / len(labels # 除以总样本数得到准确率
return accuracy
如上定义三个方法:
-
forward(self
:模型前向计算过程 -
compute_accuracy(self
:计算模型的预测准确率
__init__(self
:构造函数,在类初始化时运行,调用父类的__init__(方法进行初始化
训练
import numpy as np
# 生成随机样本(包含训练数据和测试数据
def generate_rand_samples(dot_num=100:
x_p = np.random.normal(3., 1, dot_num
y_p = np.random.normal(3., 1, dot_num
y = np.zeros(dot_num
C1 = np.array([x_p, y_p, y].T
x_n = np.random.normal(7., 1, dot_num
y_n = np.random.normal(7., 1, dot_num
y = np.ones(dot_num
C2 = np.array([x_n, y_n, y].T
x_n = np.random.normal(3., 1, dot_num
y_n = np.random.normal(7., 1, dot_num
y = np.ones(dot_num*2
C3 = np.array([x_n, y_n, y].T
x_n = np.random.normal(7, 1, dot_num
y_n = np.random.normal(3, 1, dot_num
y = np.ones(dot_num*3
C4 = np.array([x_n, y_n, y].T
data_set = np.concatenate((C1, C2, C3, C4, axis=0
np.random.shuffle(data_set
return data_set[:,:2].astype(np.float32,data_set[:,2].astype(np.int32
X_train,y_train = generate_rand_samples(
y_train[y_train == -1] = 0
设置训练前的前置参数,并初始化分类器
num_inputs = 2 # 输入维度大小
num_outputs = 4 # 输出维度大小
learning_rate = 0.01 # 学习率
num_epochs = 2000 # 训练周期数
# 归一化数据 将数据特征减去均值再除以标准差
X_train = (X_train - X_train.mean(axis=0 / X_train.std(axis=0
y_train = y_train.astype(np.compat.long
# 创建model并初始化
model = SoftmaxClassifier(num_inputs, num_outputs
criterion = nn.CrossEntropyLoss( # 交叉熵损失
optimizer = optim.SGD(model.parameters(, lr=learning_rate # SGD优化器
训练:
# 遍历训练周期数
for epoch in range(num_epochs:
outputs = model(torch.tensor(X_train # 前向传递计算
loss = criterion(outputs,torch.tensor(y_train # 计算预测输出和真实标签之间的损失
train_accuracy = model.compute_accuracy(outputs,torch.tensor(y_train # 计算模型当前训练周期中准确率
optimizer.zero_grad( # 清楚优化器中梯度
loss.backward( # 计算损失对模型参数的梯度
optimizer.step(
# 打印信息
if (epoch + 1 % 10 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item(:.4f}, Accuracy: {train_accuracy:.4f}"
运行:
Epoch [1820/2000], Loss: 0.9947, Accuracy: 0.9575
Epoch [1830/2000], Loss: 0.9940, Accuracy: 0.9600
Epoch [1840/2000], Loss: 0.9932, Accuracy: 0.9600
Epoch [1850/2000], Loss: 0.9925, Accuracy: 0.9600
Epoch [1860/2000], Loss: 0.9917, Accuracy: 0.9600
....
测试
生成测试并测试:
X_test, y_test = generate_rand_samples( # 生成测试数据
X_test = (X_test- np.mean(X_test / np.std(X_test # 归一化
y_test = y_test.astype(np.compat.long
predicts = model(torch.tensor(X_test # 获取模型输出
accuracy = model.compute_accuracy(predicts,torch.tensor(y_test # 计算准确度
print(f'Test Accuracy: {accuracy:.4f}'
输出:
Test Accuracy: 0.9725
绘制图像:
# 绘制图像
x_min, x_max = X_test[:, 0].min( - 1, X_test[:, 0].max( + 1
y_min, y_max = X_test[:, 1].min( - 1, X_test[:, 1].max( + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1, np.arange(y_min, y_max, 0.1
Z = model(torch.tensor(np.c_[xx.ravel(, yy.ravel(], dtype=torch.float32.argmax(dim=1.numpy(
Z = Z.reshape(xx.shape
plt.contourf(xx, yy, Z, alpha=0.4
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, s=20, edgecolor='k'
plt.show(
感知机分类器
sigmoid感知机的学习算法与普通的感知机类似,也是采用随机梯度下降(SGD)的方式进行更新。不同之处在于,sigmoid感知机的输出是一个概率值,需要将其转化为类别标签。
定义
# 感知机分类器
class PerceptronClassifier(nn.Module:
def __init__(self, input_size,output_size:
super(PerceptronClassifier, self.__init__(
self.linear = nn.Linear(input_size,output_size
def forward(self, x:
logits = self.linear(x
return torch.sigmoid(logits
def compute_accuracy(self, pred, target:
pred = torch.where(pred >= 0.5, 1, -1
accuracy = (pred == target.sum(.item( / target.size(0
return accuracy
给定一个输入向量(x1,x2,x3...xn,输出为y=σ(w⋅x+b=1/(e^−(w⋅x+b
训练
def generate_rand_samples(dot_num=100:
x_p = np.random.normal(3., 1, dot_num
y_p = np.random.normal(3., 1, dot_num
y = np.ones(dot_num
C1 = np.array([x_p, y_p, y].T
x_n = np.random.normal(6., 1, dot_num
y_n = np.random.normal(0., 1, dot_num
y = np.ones(dot_num*-1
C2 = np.array([x_n, y_n, y].T
data_set = np.concatenate((C1, C2, axis=0
np.random.shuffle(data_set
return data_set[:,:2].astype(np.float32,data_set[:,2].astype(np.int32
X_train,y_train = generate_rand_samples(
X_test,y_test = generate_rand_samples(
该过程与上述softmax分类器相似:
num_inputs = 2
num_outputs = 1
learning_rate = 0.01
num_epochs = 200
# 归一化数据 将数据特征减去均值再除以标准差
X_train = (X_train - X_train.mean(axis=0 / X_train.std(axis=0
# 创建model并初始化
model = PerceptronClassifier(num_inputs, num_outputs
optimizer = optim.SGD(model.parameters(, lr=learning_rate # SGD优化器
criterion = nn.functional.binary_cross_entropy
训练:
# 遍历训练周期数
for epoch in range(num_epochs:
outputs = model(torch.tensor(X_train
labels = torch.tensor(y_train.unsqueeze(1
loss = criterion(outputs,labels.float(
train_accuracy = model.compute_accuracy(outputs, labels
optimizer.zero_grad(
loss.backward(
optimizer.step(
if (epoch + 1 % 10 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item(:.4f}, Accuracy: {train_accuracy:.4f}"
输出:
Epoch [80/200], Loss: -0.5429, Accuracy: 0.9550
Epoch [90/200], Loss: -0.6235, Accuracy: 0.9550
Epoch [100/200], Loss: -0.7015, Accuracy: 0.9500
Epoch [110/200], Loss: -0.7773, Accuracy: 0.9400
....
测试
X_test, y_test = generate_rand_samples( # 生成测试集
X_test = (X_test - X_test.mean(axis=0 / X_test.std(axis=0
test_inputs = torch.tensor(X_test
test_labels = torch.tensor(y_test.unsqueeze(1
with torch.no_grad(:
outputs = model(test_inputs
accuracy = model.compute_accuracy(outputs, test_labels
print(f"Test Accuracy: {accuracy:.4f}"
绘图:
x_min, x_max = X_test[:, 0].min( - 1, X_test[:, 0].max( + 1
y_min, y_max = X_test[:, 1].min( - 1, X_test[:, 1].max( + 1
xx, yy = torch.meshgrid(torch.linspace(x_min, x_max, 100, torch.linspace(y_min, y_max, 100
# 预测每个点的类别
Z = torch.argmax(model(torch.cat((xx.reshape(-1,1, yy.reshape(-1,1, 1, 1
Z = Z.reshape(xx.shape
# 绘制分类图
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral,alpha=0.0
# 绘制分界线
w = model.linear.weight.detach(.numpy( # 权重
b = model.linear.bias.detach(.numpy( # 偏置
x1 = np.linspace(x_min, x_max, 100
x2 = (-b - w[0][0]*x1 / w[0][1]
plt.plot(x1, x2, 'k-'
# 绘制样本点
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=plt.cm.Spectral
plt.show(