ES的索引结构与算法解析

科技资讯 投稿 8000 0 评论

ES的索引结构与算法解析

作者:京东物流 李洪吉

​作为搜索引擎的一部分,ES自然具有速度快、结果准确、结果丰富等特点,那么ES是如何达到“搜索引擎”级别的查询效率呢?首先是索引,其次是压缩算法,接下来我们就一起了解下ES的索引结构和压缩算法

1 结构

1.1 Mysql

其中表columns_priv对应了3个文件:columns_priv.frm、columns_priv.MYD、columns_priv.MYI。

1.2 Elasticsearch

cfs、cfe 在segment还很小的时候,将segment的所有文件都存在在cfs中,在cfs逐渐变大时,大小超过shard的10%,则会拆分为其他文件,如tim、dvd、fdt等文件

1.3 存储结构

词项字典包含了index field的所有经过处理之后的词项数据,最终存储在.tim文件中

1.4 结构对比

id是int类型的有序主键,分词“小米”在数组Posting List中100万int类型数字总长度=100万✖每个int占4字节=400万Byte≈4MB。1个分词占4MB空间,假如10亿条数据有500万个分词,总空间=4MB✖500万=2千万MB,磁盘空间直接爆炸

2 算法

ES中倒排索引的压缩算法主要有FOR算法(Frame Of Reference和RBM算法(RoaringBitMap

2.1 FOR

数组[73,227]占据总空间为8bit✖2个=16bit=2Byte

为什么20bit=3Byte呢?因为8bit=1Byte,小于8bit也会占据1个字节空间,所以17bit到24bit均为3Byte

答:如果继续拆分数组,空间确实会使用更少,但是,之前我们提到搜索引擎速度快的方式有两种:高效的压缩算法和快速的编码解码速度,单个数字存储确实压缩了空间,但是我们无法再通过解码的方式将源数据还原

答:数据量小的情况下确实会出现该情况,因为我们需要拆分数组并记录拆分数组的长度(如上面示例中的8bit和5bit),在原数据存储空间基础上还要存储拆分长度,所以数据量小的情况下会出现比直接存储占据空间大的情况。但是不管是搜索引擎还是Elasticsearch更多处理的是海量数据,数据量越多,差值数组拆分的方式节省空间越明显

2.2 RBM

源数据PostingList是由int类型组成的数组,int类型=4Byte=32bit,最大值=2的32次方-1=4294967295≈43亿。当数据较大且稀疏时,我们将32bit拆分为16bit和16bit,16bit最大值=65535,前16bit存放,后16bit存放余数,所以商和余数都不会超过65535.我们将源数组的值除以65536,得到的商和余数分别存放在前16bit和后16bit。

由于源数组为有序数组,所以按照高低16位转化后,商和余数都是从小到大排列

    ArrayContainer本质为集合,所以随着数组中数量越多,占用空间越多,呈正向增长。

当数组种数量为65536时,占据总空间=65536个✖16bit(即2Byte➗1024=128KB

    BitmapContainer位图,核心就是将原有存储数值转化成该数值在哪个位置上存在
    RunContainer用法相对狭隘,这种类型是Lucene 5之后新增的类型,主要应用在连续数字的存储商,比如倒排表中存储的数组为 [1,2,3…100W] 这样的连续数组,如果使用RunContainer,只需存储开头和结尾两个数字:1和100W,即占用8个字节。这种存储方式的优缺点都很明显,它严重收到数字连续性的影响,连续的数字越多,它存储的效率就越高
  • 如果数组是如下形式 [1,2,3,4,5,100,101,102,999,1000,1001] 就会被拆分为三段:[1,5],[100,102],[999,1001]

至于每次存储采用什么容器,需要进行一下判定,比如ArrayContainer,当存储的元素少于4096个时,他会比BitmapContainer占用更少空间,而当大于4096个元素时,采用ArrayContainer所需要的空间就会大于8kb,那么采用BitmapContainer就会占用更少空间

3 总结

ES在处理海量数据时通过其独到的结构和压缩算法,将索引效率尽可能的提升。虽然在实际业务处理中我们极少遇到海量数据处理的情况,但是通过了解ES的原理,能够帮我们开阔下视野,了解数字之美,算法之美。

编程笔记 » ES的索引结构与算法解析

赞同 (39) or 分享 (0)
游客 发表我的评论   换个身份
取消评论

表情
(0)个小伙伴在吐槽