题目
题目描述
- C a b means performing \(A_i = A_i^2 \mod 2018\ for all Ai such that a ≤ i ≤ b.
- Q a b means query the sum of Aa, Aa+1, ..., Ab. Note that the sum is not taken modulo 2018.
输入描述
The first line of each test case contains N (1 ≤ N ≤ 50000.The second line contains N numbers, the initial values of A1, A2, ..., An. 0 ≤ Ai < 2018. The third line contains the number of operations Q (0 ≤ Q ≤ 50000. The following Q lines represents an operation having the format "C a b" or "Q a b", which has been described above. 1 ≤ a ≤ b ≤ N。
输出描述
You need to answer all Q commands in order. One answer in a line。
示例1
输入
1
8
17 239 17 239 50 234 478 43
10
Q 2 6
C 2 7
C 3 4
Q 4 7
C 5 8
Q 6 7
C 1 8
Q 2 5
Q 3 4
Q 1 8
输出
Case #1:
779
2507
952
6749
3486
9937
题解
知识点:线段树,数论。
容易证明,\(A_i = A_i^2 \mod 2018\ 运算在有限次操作后一定会进入一个循环节,且长度的最小公倍数不超过 \(6\ 。而且可以发现,进入循环的需要的操作次数其实很少。
因此,我们先预处理枚举 \([0,2018\ 所有数是否在循环节内,用 \(cyc\ 数组记录每个数的所在循环节的长度。如果某数的循环节长度非 \(0\,则其为循环节的一部分。我们对循环节长度取最小公倍数 \(cyclcm\,以便统一管理。
区间合并,有两种情况:
- 存在子区间未进入循环,则区间未进入循环,最终值由子区间当前值相加。
- 子区间都进入循环,则区间进入循环,顺序遍历子区间对应的循环值,并将和更新到区间的 \(sum\ 。
区间修改,有两种情况:
- 区间未进入循环,则继续递归子区间,直到单点修改。每次单点修改后,检查是否进入循环,若进入循环,则预处理出 \(sum\ 。
- 区间已进入循环,则直接平移 \(pos\ 即可。
这道题实际上是洛谷P4681的弱化版,我这里使用了通解的做法,比只针对这道题的做法要慢一点。只针对这道题的做法是基于另一个更进一步的结论,所有数字在 \(6\ 次操作之后一定进入循环,那么只需要记录一个单点是否操作 \(6\ 次作为检查条件即可,省去了枚举 \([0,2018\ 所有数字的循环节长度的时间。
空间复杂度 \(O(n\
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int P = 2018;
int cyc[P];
int cyclcm;
void init_cyc( {
cyclcm = 1;
for (int i = 0;i < P;i++ {
cyc[i] = 0;
vector<int> vis(P;
for (int j = 1, x = i;;j++, x = x * x % P {
if (vis[x] {
if (x == i {
cyc[i] = j - vis[i];
cyclcm = lcm(cyclcm, cyc[i];
}
break;
}
vis[x] = j;
}
}
}
class SegmentTreeLazy {
struct T {
array<int, 6> sum;
int pos;
bool lp;
};
struct F {
int cnt;
};
int n;
vector<T> node;
vector<F> lazy;
void push_up(int rt {
node[rt].lp = node[rt << 1].lp && node[rt << 1 | 1].lp;
node[rt].pos = 0;
if (node[rt].lp
for (int i = 0, l = node[rt << 1].pos, r = node[rt << 1 | 1].pos;
i < cyclcm;
i++, ++l %= cyclcm, ++r %= cyclcm
node[rt].sum[i] = node[rt << 1].sum[l] + node[rt << 1 | 1].sum[r];
else node[rt].sum[0] = node[rt << 1].sum[node[rt << 1].pos] + node[rt << 1 | 1].sum[node[rt << 1 | 1].pos];
}
void push_down(int rt {
(node[rt << 1].pos += lazy[rt].cnt %= cyclcm;
(lazy[rt << 1].cnt += lazy[rt].cnt %= cyclcm;
(node[rt << 1 | 1].pos += lazy[rt].cnt %= cyclcm;
(lazy[rt << 1 | 1].cnt += lazy[rt].cnt %= cyclcm;
lazy[rt].cnt = 0;
}
void check(int rt {
node[rt].pos = 0;
if (cyc[node[rt].sum[0]] {
node[rt].lp = 1;
for (int i = 1;i < cyclcm;i++
node[rt].sum[i] = node[rt].sum[i - 1] * node[rt].sum[i - 1] % P;
}
else node[rt].lp = 0;
}
void update(int rt, int l, int r, int x, int y {
if (r < x || y < l return;
if (x <= l && r <= y && node[rt].lp {
++node[rt].pos %= cyclcm;
++lazy[rt].cnt %= cyclcm;
return;
}
if (l == r {
node[rt].sum[0] = node[rt].sum[0] * node[rt].sum[0] % P;
check(rt;
return;
}
push_down(rt;
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y;
update(rt << 1 | 1, mid + 1, r, x, y;
push_up(rt;
}
int query(int rt, int l, int r, int x, int y {
if (r < x || y < l return 0;
if (x <= l && r <= y return node[rt].sum[node[rt].pos];
push_down(rt;
int mid = l + r >> 1;
return query(rt << 1, l, mid, x, y + query(rt << 1 | 1, mid + 1, r, x, y;
}
public:
SegmentTreeLazy(const vector<int> &src { init(src; }
void init(const vector<int> &src {
assert(src.size( >= 2;
n = src.size( - 1;
node.assign(n << 2, { {},0,0 };
lazy.assign(n << 2, { 0 };
function<void(int, int, int> build = [&](int rt, int l, int r {
if (l == r {
node[rt].sum[0] = src[l];
check(rt;
return;
}
int mid = l + r >> 1;
build(rt << 1, l, mid;
build(rt << 1 | 1, mid + 1, r;
push_up(rt;
};
build(1, 1, n;
}
void update(int x, int y { update(1, 1, n, x, y; }
int query(int x, int y { return query(1, 1, n, x, y; }
};
//* 朴素操作开销太大(array复制),因此全部展开
bool solve( {
int n;
cin >> n;
vector<int> a(n + 1;
for (int i = 1;i <= n;i++ cin >> a[i];
init_cyc(;
SegmentTreeLazy sgt(a;
int m;
cin >> m;
while (m-- {
char op;
int l, r;
cin >> op >> l >> r;
if (op == 'C' sgt.update(l, r;
else cout << sgt.query(l, r << '\n';
}
return true;
}
int main( {
std::ios::sync_with_stdio(0, cin.tie(0, cout.tie(0;
int t = 1;
cin >> t;
for (int i = 1;i <= t;i++ {
cout << "Case #" << i << ":" << '\n';
if (!solve( cout << -1 << '\n';
}
return 0;
}