使用 Semantic Kernel 实现 Microsoft 365 Copilot 分析

科技资讯 投稿 6500 0 评论

1、Copilot 系统

image

image

image

image

image

在Semantic Kernel的示例中,可以通过内置的 Microsoft Graph 连接器在上下文中添加的: 连接器是技能的一部分,您还可以使用Memory函数从Memory中的键值存储和矢量数据库中检索和添加内存和先验知识。 当然,您可以自己自定义技能和连接器。 还可以将其连接到 Azure 认知搜索。

image

无论您是在构建客户服务工具、个性化推荐系统、人力资源助理、教育工具还是电子商务助手,我们的 Copilot Chat 都可以提供帮助。我们认为,从示例应用下载和生成会有很多好处。

提高效率: 通过处理客户服务或人力资源任务的聊天机器人,您可以让员工专注于需要人工干预的更复杂的任务。这可以提高组织的效率并降低成本。

改进的可访问性:通过语音识别和文件上传,您的聊天机器人可以为用户提供更准确和个性化的帮助。例如,难以浏览网站的患者可以更轻松地使用聊天,并快速有效地接收所需的信息。

总结

[1] 微软365 Copilot: https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/

[3]Microsoft Graph: https://learn.microsoft.com/graph/overview

编程笔记 » 使用 Semantic Kernel 实现 Microsoft 365 Copilot 分析

赞同 (28) or 分享 (0)
游客 发表我的评论   换个身份
取消评论

表情
(0)个小伙伴在吐槽