斜率优化入门

科技资讯 投稿 5200 0 评论

斜率优化入门

前言

虽然它的名字很高大上,但是其思想内核非常简单,这篇博客就是用来帮助各位快速入门的

引入

dp 优化可以怎么分类?

  1. 算法维护决策点集大小,取出无用决策点

Q1

A1

先列出一个朴素的 dp 方程:

然后我们考虑决策点 \(j,k\ 满足 \(k<j\ 且 \(j\ 优于 \(k\

\(dp_j + (pre[i]+i-L-1^2 + (pre[j]+j^2 - 2 \times (pre[i]+i-L-1 \times (pre[j]+j < dp_k + (pre[i]+i-L-1^2 + (pre[k]+k^2 - 2 \times (pre[i]+i-L-1 \times (pre[k]+k\

\(dp_j + (pre[j]+j^2 - dp_k + (pre[k]+k^2 < 2 \times (pre[i]+i-L-1 \times (pre[j]+j - 2 \times (pre[i]+i-L-1 \times (pre[k]+k\

然后我们发现这个等式两边全部具有单调性,所以就可以用单调队列维护最优答案

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int sum[maxn],q[maxn];
int dp[maxn];
int n,L;
int top(int j,int k{
	return (sum[j]+j*(sum[j]+j+dp[j]-(sum[k]+k*(sum[k]+k-dp[k];
}
int down(int j,int k{
	return sum[j]+j-sum[k]-k;
} 
signed main({
	cin>>n>>L;
	for(int i=1;i<=n;i++ cin>>sum[i];
	sum[0]=dp[0]=0;
	int l=1,r=0;
	q[++r]=0;
	for(int i=1;i<=n;i++ sum[i]+=sum[i-1];
	for(int i=1;i<=n;i++{
		while(l+1<=r&&2*(i+sum[i]-1-L*down(q[l+1],q[l]>=top(q[l+1],q[l] l++;
		dp[i]=dp[q[l]]+(i-q[l]-1+sum[i]-sum[q[l]]-L*(i-q[l]-1+sum[i]-sum[q[l]]-L; 
		while(l+1<=r&&top(i,q[r]*down(q[r],q[r-1]<=top(q[r],q[r-1]*down(i,q[r] r--;
		q[++r]=i;
	}
	cout<<dp[n];
}

Q2

P3628

A2

对于决策点 \(j,k\ 且 \(k<j\ 且 \(j\ 优于 \(k\

\(dp_j+(pre_i-pre_j^2 \times a+(pre_i-pre_j \times b>dp_k+(pre_i-pre_k^2 \times a+(pre_i-pre_k \times b\

\(dp_j+a \times pre_i^2+a \times pre_j^2-2a \times pre_i \times pre_j+pre_i \times b-pre_j \times b\

\(dp_j+a \times pre_j^2-dp_k-a \times pre_k^2+pre_k \times b-pre_j \times b>2a \times pre_i \times pre_j-2a \times pre_i \times pre_k\

\(2a \times pre_i \times (pre_j-pre_k<dp_j-dp_k+a \times pre_j^2-a \times pre_k^2+pre_k \times b-pre_j \times b\

两边同样具有单调性。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int sum[maxn],q[maxn];
int dp[maxn];
int n,m,a,b,c;
int top(int i,int j{
	return dp[i]-dp[j]+a*sum[i]*sum[i]-a*sum[j]*sum[j]+sum[j]*b-sum[i]*b;
}
int down(int i,int j{
	return sum[i]-sum[j];
}
signed main({
		cin>>n;
		cin>>a>>b>>c; 
		for(int i=1;i<=n;i++ cin>>sum[i];
		sum[0]=dp[0]=0;
		int l=1,r=0;
		q[++r]=0;
		for(int i=1;i<=n;i++ sum[i]+=sum[i-1];
		for(int i=1;i<=n;i++{
			while(l+1<=r&&2*a*sum[i]*down(q[l+1],q[l]<top(q[l+1],q[l] l++;
			dp[i]=dp[q[l]]+(sum[i]-sum[q[l]]*(sum[i]-sum[q[l]]*a+(sum[i]-sum[q[l]]*b+c; 
			//val(r,i < val(r-1,r r-- 
			while(l+1<=r&&top(i,q[r]*down(q[r],q[r-1]>=top(q[r],q[r-1]*down(i,q[r] r--;
			q[++r]=i;
		}
		cout<<dp[n];
}

Q3

P2900

A3

对于决策点 \(j,k\ 且 \(k<j\ 且 \(j\ 优于 \(k\

$ \max(j+1,i(b_i \times a_i- \max(k+1,i(b_i \times a_i<dp_k-dp_j$

\(a_i<(dp_k-dp_j/( \max(j+1,i(b_i- \max(k+1,i(b_i\

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int q[maxn];
int dp[maxn];
struct Node{
	int a,b;
}chifan[maxn];
int tree[maxn*4];
void pushup(int cur{
	tree[cur]=max(tree[cur*2],tree[cur*2+1]; 
}
void build(int cur,int l,int r{
	if(l==r{
		tree[cur]=chifan[l].b;
		return;
	}
	int mid=(l+r/2;
	build(cur*2,l,mid;
	build(cur*2+1,mid+1,r;
	pushup(cur;
}
int ask(int cur,int lt,int rt,int l,int r{
	if(rt<l||r<lt{
		return 0;
	}
	if(l<=lt&&rt<=r{
		return tree[cur];
	}
	int mid=(lt+rt/2;
	int sum=0;
	sum=max(sum,ask(cur*2,lt,mid,l,r;
	sum=max(sum,ask(cur*2+1,mid+1,rt,l,r;
	return sum;
}
bool cmp(Node A,Node B{
	return A.a<B.a; 
}
int n;

int top(int j,int k{
	return dp[k]-dp[j];
}
int down(int i,int j,int k{
	return ask(1,1,n,j+1,i-ask(1,1,n,k+1,i;
}
signed main({
		cin>>n;
		for(int i=1;i<=n;i++ cin>>chifan[i].a>>chifan[i].b;
		sort(chifan+1,chifan+n+1,cmp;
		build(1,1,n;
		dp[0]=0;
		int l=1,r=0;
		q[++r]=0;
		for(int i=1;i<=n;i++{
			while(l+1<=r&&chifan[i].a*down(i,q[l+1],q[l]<top(q[l+1],q[l] l++;
			dp[i]=dp[q[l]]+ask(1,1,n,q[l]+1,n*chifan[i].a; 
			while(l+1<=r&&top(i,q[r]*down(n,q[r],q[r-1]<=top(q[r],q[r-1]*down(n,i,q[r] r--;
			q[++r]=i;
		}
		cout<<dp[n];		
}

Q4

P2120

A4

\(dp_i=dp_j+(\sum_{k=j+1}^{i} p_k \times x_i-p_k \times x_k+c_i\

\(dp_i=dp_j+x_i \times (\sum_{k=j+1}^{i} p_k-(\sum_{k=j+1}^{i} p_k \times x_k+c_i\

\(dp_i=dp_j+x_i \times (pre_i-pre_j-(chifan_i-chifan_j+c_i\

\(dp_j+x_i \times (pre_i-pre_j-(chifan_i-chifan_j+c_i<dp_k+x_i \times (pre_i-pre_k-(chifan_i-chifan_k+c_i\

\(dp_j+chifan_j-chifan_k-dp_k<pre_j \times x_i-pre_k \times x_i\

\(x_i>(dp_j-dp_k+chifan_j-chifan_k/(pre_j-pre_k\

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int sum[maxn],q[maxn];
int chifan[maxn],c[maxn],p[maxn],x[maxn];
int dp[maxn];
int n,m;
int top(int j,int k{
	return dp[j]-dp[k]+chifan[j]-chifan[k];
}
int down(int j,int k{
	return sum[j]-sum[k];
}
void init({
	for(int i=1;i<=n;i++{
		sum[i]=sum[i-1]+p[i]; 
	}
	for(int i=1;i<=n;i++{
		chifan[i]=chifan[i-1]+p[i]*x[i];
	}
} 
signed main({
		cin>>n;
		for(int i=1;i<=n;i++ cin>>x[i]>>p[i]>>c[i];
		init(;
		dp[0]=0;
		int l=1,r=0;
		q[++r]=0;
		for(int i=1;i<=n;i++{
			while(l+1<=r&&x[i]*down(q[l+1],q[l]>top(q[l+1],q[l] l++;
			dp[i]=dp[q[l]]+x[i]*(sum[i]-sum[q[l]]-(chifan[i]-chifan[q[l]]+c[i];
			while(l+1<=r&&top(i,q[r]*down(q[r],q[r-1]<=top(q[r],q[r-1]*down(i,q[r] r--;
			q[++r]=i;
		}
		if(p[n]==0 dp[n]-=c[n];
		cout<<dp[n];
		return 0;
}

总结

一般来说,为了兼顾单调性以及不被贪心暴踩,斜率优化 dp 带有一个平方项

不过只要对于决策点 \(j,k\ 且 \(k<j\ 能表述成 \(f(i > g(j,k\ (\(g(j,k\ 常常为斜率的形式,因此叫做斜率优化且两边单调的形式,都可以斜率优化,不过有时候这个式子更为灵活,需要变通

编程笔记 » 斜率优化入门

赞同 (26) or 分享 (0)
游客 发表我的评论   换个身份
取消评论

表情
(0)个小伙伴在吐槽