抽象队列同步器AQS
AQS介绍
FIFO队列 维护线程的同步状态,实现类只需要继承
AbstractQueuedSynchronizer
,并重写指定方法(tryAcquire(/tryRelease(等即可实现线程同步机制。
AQS 继承结构
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable{
//...
}
AbstractOwnableSynchronizer
独占资源与占有线程的关联
package java.util.concurrent.locks;
public abstract class AbstractOwnableSynchronizer implements java.io.Serializable {
private static final long serialVersionUID = 3737899427754241961L;
protected AbstractOwnableSynchronizer( { }
// 占有线程
private transient Thread exclusiveOwnerThread;
// 设置占有线程
protected final void setExclusiveOwnerThread(Thread thread {
exclusiveOwnerThread = thread;
}
// 获取占有线程
protected final Thread getExclusiveOwnerThread( {
return exclusiveOwnerThread;
}
}
AQS原理
AQS维护一个CLH (Craig, Landin, and Hagersten 双向队列,记录头指针
head
(头指针无意义,没有对应线程 和 尾指针tail
,同时维护了一个volatile int state
变量记录同步状态(初始状态默认为0,表示未被该资源未被占用。
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable{
private static final long serialVersionUID = 7373984972572414691L;
// 队列头节点
private transient volatile Node head;
// 队列尾节点
private transient volatile Node tail;
// 同步状态
private volatile int state;
// CAS 原子更新状态
protected final boolean compareAndSetState(int expect, int update {
// See below for intrinsics setup to support this
return unsafe.compareAndSwapInt(this, stateOffset, expect, update;
}
}
申请锁 -> lock( 执行过程
以
ReentrantLock
为例子,该锁默认实现是一个非公平独占锁。
public static void main(String[] args {
// 独占锁、默认非公平锁
ReentrantLock reentrantLock = new ReentrantLock(;
reentrantLock.lock(;
}
// ReentrantLock.lock(
public void lock( {
sync.lock(;
}
// NofairSync.lock(
final void lock( {
// CAS 获取锁
if (compareAndSetState(0, 1
setExclusiveOwnerThread(Thread.currentThread(;
else
// 获取锁失败
acquire(1;
}
public final void acquire(int arg {
// tryAcquire: 尝试获取锁
// acquireQueued: 添加到阻塞队列
if (!tryAcquire(arg &&
acquireQueued(addWaiter(Node.EXCLUSIVE, arg
selfInterrupt(;
}
tryAcquire
执行链: 尝试获取锁,获取不到则返回false
// NofairSync.tryAcquire(
protected final boolean tryAcquire(int acquires {
return nonfairTryAcquire(acquires;
}
// Sync.nofairTryAcquire(
final boolean nonfairTryAcquire(int acquires {
final Thread current = Thread.currentThread(;
int c = getState(;
if (c == 0 {
if (compareAndSetState(0, acquires {
setExclusiveOwnerThread(current;
return true;
}
}
else if (current == getExclusiveOwnerThread( {
int nextc = c + acquires;
if (nextc < 0 // overflow
throw new Error("Maximum lock count exceeded";
setState(nextc;
return true;
}
return false;
}
acquireQueued
执行链:首先通过 addWaiter 方法将线程添加到队列尾部
- 然后通过 acquireQueued 方法实现线程进入CLH队列后如何被阻塞或者被唤醒获取锁
// AbstractQueuedSynchronizer.addWaiter(
// 添加 node 到等待队列尾部
// 返回插入的节点 node
private Node addWaiter(Node mode {
Node node = new Node(Thread.currentThread(, mode;
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null {
node.prev = pred;
if (compareAndSetTail(pred, node {
pred.next = node;
return node;
}
}
// tail == null
enq(node;
return node;
}
// 线程进入等待队列之后,如何获取锁或者继续阻塞
final boolean acquireQueued(final Node node, int arg {
boolean failed = true;
try {
boolean interrupted = false;
for (;; {
final Node p = node.predecessor(;
// 如果当前节点的前驱节点为 head,则竞争锁资源
if (p == head && tryAcquire(arg {
setHead(node;
p.next = null; // help GC
failed = false;
return interrupted;
}
// 当前节点的前驱节点不是 head, 或者竞争锁失败
// shouldParkAfterFailedAcquire: true, 调用 parkAndCheckInterrupt( 阻塞线程
// shouldParkAfterFailedAcquire: false, 再次进入循环块,竞争锁
if (shouldParkAfterFailedAcquire(p, node &&
parkAndCheckInterrupt(
interrupted = true;
}
} finally {
if (failed
// for循环意外退出才能走到这
cancelAcquire(node;
}
}
/**
* 判断当前线程是否需要阻塞
* 阻塞(return true:
* 1.前驱节点的状态 pred.waitStatus=SIGNAL
* 不阻塞(return false:
* 1.前驱节点的状态为 CANCELLED,循环向前找 ws <= 0 的前驱节点
* 2.前驱节点的状态 ws = 0 || ws = PROPAGATE
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0 {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0;
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL;
}
return false;
}
释放锁 -> unlock( 执行过程
同样以
ReentrantLock
为例子,该锁默认实现是一个非公平独占锁。
public static void main(String[] args {
// 独占锁、默认非公平锁
ReentrantLock reentrantLock = new ReentrantLock(;
reentrantLock.lock(;
try {
// 业务代码
} catch (Exception e {
e.printStackTrace(;
} finally {
reentrantLock.unlock(;
}
}
// ReentrantLock.unlock(
public void unlock( {
sync.release(1;
}
release
执行链:通过 tryRelease 方法判断当前锁是否已经被完全释放
- 如果已经被完全释放 -> 则唤醒其后继节点对应的线程
// AbstractQueuedSynchronizer.release(
// tryRelease( 返回 true -> 则执行 if 中的逻辑 -> unparkSuccessor: 唤醒后继节点
public final boolean release(int arg {
if (tryRelease(arg {
Node h = head;
if (h != null && h.waitStatus != 0
unparkSuccessor(h;
return true;
}
return false;
}
// 释放锁,修改 state
// free: true 锁已经完全释放,唤醒其他线程竞争
// free: false 锁仍然被当前线程占有
protected final boolean tryRelease(int releases {
int c = getState( - releases;
if (Thread.currentThread( != getExclusiveOwnerThread(
throw new IllegalMonitorStateException(;
boolean free = false;
if (c == 0 {
free = true;
setExclusiveOwnerThread(null;
}
setState(c;
return free;
}
unparkSuccessor
: 唤醒后继节点情况1:直接唤醒当前节点的后继节点
- 情况2: 情况1对应的节点状态为 CANCELLED,则从CLH队列尾部开始寻找 ws <= 0 的节点唤醒
/**
* 唤醒后继节点
*
* waitStatus:
* CANCELLED(1 : 当前节点因超时或响应中断结束调度,进入该状态的节点不再变化
* SIGNAL(-1 : 后继节点等待当前节点唤醒
* CONDITION(-2 : 当前节点处于 condition 上,等待转移到CLH同步队列
* PROPAGETE(-3 : 当前节点处于 shared 状态
* 0 : 默认状态
*/
private void unparkSuccessor(Node node {
/*
* If status is negative (i.e., possibly needing signal try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0
compareAndSetWaitStatus(node, ws, 0;
// 情况1:直接唤醒当前节点的后继节点
// 情况2: 情况1对应的节点状态为 CANCELLED,则从CLH队列尾部开始寻找 ws <= 0 的节点唤醒
Node s = node.next;
if (s == null || s.waitStatus > 0 {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev
if (t.waitStatus <= 0
s = t;
}
if (s != null
LockSupport.unpark(s.thread;
}
FairSync && NofairSync
FairSync
: 以 ReentrantLock 的公平锁实现为例
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock( {
acquire(1;
}
protected final boolean tryAcquire(int acquires {
final Thread current = Thread.currentThread(;
int c = getState(;
if (c == 0 {
// 判断 CLH 队列是否有正在等待的线程,如果有,则唤醒CLH 队列 head 的后继节点
if (!hasQueuedPredecessors( &&
compareAndSetState(0, acquires {
setExclusiveOwnerThread(current;
return true;
}
}
else if (current == getExclusiveOwnerThread( {
int nextc = c + acquires;
if (nextc < 0
throw new Error("Maximum lock count exceeded";
setState(nextc;
return true;
}
return false;
}
}
NofairSync
: 以 ReentrantLock 的非公平锁实现为例
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock( {
// CAS 抢锁,如果恰巧没有线程占有,则直接获取锁返回
if (compareAndSetState(0, 1
setExclusiveOwnerThread(Thread.currentThread(;
else
// 抢锁失败,则进入 acquire
acquire(1;
}
protected final boolean tryAcquire(int acquires {
return nonfairTryAcquire(acquires;
}
}
final boolean nonfairTryAcquire(int acquires {
final Thread current = Thread.currentThread(;
int c = getState(;
if (c == 0 {
// 同样进行 CAS 抢锁,而不是判断 CLH 队列中是否有等待线程
if (compareAndSetState(0, acquires {
setExclusiveOwnerThread(current;
return true;
}
}
else if (current == getExclusiveOwnerThread( {
int nextc = c + acquires;
if (nextc < 0 // overflow
throw new Error("Maximum lock count exceeded";
setState(nextc;
return true;
}
// 抢锁失败,则进入
return false;
}
所以,公平锁和非公平锁的区别总结如下:
- 非公平锁调用
- 抢占锁失败后进入
tryAcquire(
方法,公平锁会去判断CLH等待队列是否有线程处于等待状态,如果有则不抢占锁;非公平锁则会直接进行 CAS 尝试抢占锁
lock(
方法,会马上进行一次 CAS 抢占锁
[^]: 注:以上源代码阅读与分析,基于 Oracle JDK8 版本