京东APP百亿级商品与车关系数据检索实践

科技资讯 投稿 5400 0 评论

京东APP百亿级商品与车关系数据检索实践

导读

1.背景

整个汽车行业行特殊性,对于零配件有一个很强的对口特性,不同车使用的零配件(例如:轮胎、机油、三滤、雨刮、火花塞等)规格型号不一样。在售卖汽车零配件的时候,不能像3C家电、服饰,需要结合用户具体车辆信息,推荐适合的配件商品。基于此原因,京东自建人车档案模型并且利用算法清洗出百亿级的车型-零配件的适配关系数据,最终形成“人->车-〉货”关系链路,解决“人不识货”的问题。 具体使用场景如下图:

图1.1京东商详推荐商品 图1.2京东加购弹窗推荐商品

2.数据模型

人-> 车->货”关系的核心链路是由人(京东用户)、乘用车和SKU这三部分组成。

图2.1,京东商详绑车入口位置“+添加爱车”按钮),建立“人车档案”数据。

图2.1.京东商详绑车入口位置 图2.2.京东商搜绑车入口位置

最终,购买商品的时候,京东推荐系统可以通过用户自己绑定的车型推荐出适合该车型的商品。具体商品适配车型数据模型,见图2.3

图2.3京东商品适配车型数据模型

3.缓存结构设计

3.1位图(bitmap结构

位图(bitmap是通过最小的单位bit来进行0或者1的设置,表示某个元素对应的值或者状态。一个bit的值是0或者1;也就是说一个bit能存储的最多信息是2。

• 字节(byte):计算机中数据处理的基本单位,习惯上用大写B来表示,1B(byte,字节=8bit。

图3.1位图(bitmap内部结构

3.2位图(bitmap数据写流程

图3.2.1“big”字符串的SDS结构

位置1:创建SDS简单字符串预分配空间为:偏移量/8+1。

位置2:剩余空间不足时,预分配空间流程。

3.3压缩商品与车关系缓存

偏移量(自增ID) 全量车型 商品SKU
1 1165788 101362
2 1165793 101362

商品适配车型关系(百亿级数据量)

全量车型ID大约有几十万的数据量,极限情况下一个商品SKU可以适配几十万辆车,很容易造成缓存大KEY的问题,为此我们进行了偏移量(全量车型ID对应的自增ID)的分段处理。具体是按照:SKU作为缓存KEY的基础上,追加一个分段标记数字作为新KEY,每个偏移量都会按照分段范围对应一个分段标记数字。例如:偏移量1~50000,对应缓存KEY为SKU+0;偏移量50001~100000,对应缓存KEY为SKU+1,其它偏移量以此类推,这样就保证了一个SKU即使适配所有车辆也不会出现缓存大KEY的情况。

图3.2.2,“缓存BitMap内部存储流程图”的“位置2”中虚线框圈选),这样在缓存商品与车关系的时候浪费了大量的缓存空间。为此我们调整了偏移量存储顺序,首先获取到需要缓存的车型内最大的偏移量,保证同一个缓存KEY第1次创建SDS简单字符串(图3.2.2,“缓存BitMap内部存储流程图”的“位置1”中虚线框圈选)后,不再进行第2次空间扩容,这样来最大限度的提升缓存利用率,起到压缩空间目的。缓存数据关系流程如下:

图3.3.1缓存数据关系流程

位置3:设置分段最大的偏移量,保证后续新增偏移量不再扩容空间。

位置4:设置分段较小的偏移量。

3.3.2商品与车缓存结构图

位置5:spuId用{}括起来表示缓存路由(Lua脚本中同一次请求,数据必须在缓存同一个分片上,否则会丢失数据)。POP商品spuId是SKU的产品ID,自营商品spuId是SKU的MainSkuId。

1、自营商品MainSkuId可能发生变化,所以我们接入了商品变化MQ消息,实时调整SKU与车适配关系的存储位置。

4.缓存架构设计

商品与车的关系数据量每天都在不断增长,要求缓存架构设计,需要支持集群横向/纵向扩容和来满足业务发展以及高可用性。整个缓存架构体系主要有前端、京东养车商品与车关系层和存储三部分组成。

“存储”层核心包括:1、实现了缓存压缩,参见3.3压缩商品与车关系缓存。2、单元化实现跨区域灾备,保障大促系统稳定性。具体商品与车关系缓存架构如下:

4.1商品与车关系缓存架构图

位置6:集群路由,通过商品类型或者商品编号(POP商品路由到不同缓存集群,便于横向扩展,每个集群单分片限制,解决分片超过限制问题。

位置7:分片路由,保障Lua脚本搜索数据的底层数据集群分片相同,避免数据丢失。其中自营商品和POP商品的路由分别是main_sku_id和product_id。

位置8:自营商品缓存集群,单元化实现跨区域灾备,采用自研DRC(Data Replication Center)数据同步机制。

位置9:POP商品缓存集群,通过商家编号拆分为两个子集群。

5.高性能搜索

5.1商详搜索商品与车适配关系流程图

位置10:商详调用接口的时候,要传两个参数。第1个参数是全量车型ID列表,大约5个全量车型ID。第2个参数是商品SKU列表,SKU的数量极限超过200个。最后全量车型ID与商品SKU组合为上千个商品与车的关系后,再到百亿级适配关系去搜索看是否匹配的。如果不匹配返回适配商品,反之则返回不适配。

5.2商详搜索商品与车适配关系Lua代码

5.3商详搜索商品与车适配关系接口性能

6.总结

作者:京东零售 张强

内容来源:京东云开发者社区

编程笔记 » 京东APP百亿级商品与车关系数据检索实践

赞同 (31) or 分享 (0)
游客 发表我的评论   换个身份
取消评论

表情
(0)个小伙伴在吐槽