前言
逻辑回归 = 线性回归 + sigmoid 函数
回顾线性回归
- 表达式:\(y = wx + b\
sigmoid 函数
以0.5为分界线的激活函数,主要用于将结果输入sigmoid 函数中sigmoid函数会输出一个[0,1] 区间的概率值,0.5以上为一类,0.5以下为一类,这样完成二分类任务
逻辑回归的公式
-
所以可以写成 \(y =\frac{1}{1+e^{-wx+b}}\
\(z = wx+b\
逻辑回归的损失
- \(J = -[ylna+(1-yln(1-a]\
- 逻辑回归损失函数体现在“预测值” 与 “实际值” 相似程度上
- 损失值越小,模型会越好,但是过于小也要考虑过拟合的原因
梯度下降与参数更新
deltatheta = (1.0 / m * X.T.dot(h - y
更新参数:\(\theta_j = \theta_j - \alpha\Delta\theta_j\
theta = theta - alpha * deltatheta
代码
import numpy as np
import matplotlib.pyplot as plt
data = np.loadtxt('ex2data1.txt',delimiter=','
x = data[:,:-1]
y = data[:,-1]
x -= np.mean(x,axis=0
x /= np.std(x,axis=0
X = np.c_[np.ones(len(x,x]
def mov(theta:
z = np.dot(X,theta
h = 1/(1+np.exp(-z
return h
def cos(h:
j = -np.mean(y*np.log(h+(1-y*np.log(1-h
return j
def tidu(sus=10000,aphe=0.1:
m,n = X.shape
theta = np.zeros(n
j = np.zeros(sus
for i in range(sus:
h = mov(theta
j[i] = cos(h
te = (1/m*X.T.dot(h-y
theta -= te * aphe
return h,j,theta
if __name__ == '__main__':
h,j,theta = tidu(
print(j
plt.plot(j
plt.show(